Name: \qquad

Math 315, Section 2
Exam 1
Instructor: David G. Wright
29-31 January 2009

1. (20%) Give an example of each of the following or argue that such a request is impossible:
(a) an unbounded sequence with a convergent subsequence;
(b) a nested sequence of open intervals whose intersection is empty;
(c) an unbounded sequence $\left(a_{n}\right)$ and a convergent sequence $\left(b_{n}\right)$ so that $\left(a_{n}-b_{n}\right)$ is bounded;
(d) a bounded monotone sequence that has a divergent subsequence.
2. (10\%) State and prove the Archimedean Property.
3. (10\%) Assume that for any two positive real numbers $a<b$, there exists a rational number r satisfying $a<r<b$. Prove that for any two negative numbers $c<d$, there is a rational number s with $c<s<d$.
4. (10%) Show that the real numbers \mathbb{R} are uncountable.
5. (10\%) Prove that the sequence defined by $a_{1}=1$ and $a_{n+1}=3-\frac{1}{a_{n}}$ is increasing and $a_{n}<3$ for all n. Explain why a_{n} is convergent and find its limit. Hint: First show $1 \leq a_{n}<3$ for all n.
6. (20%) Let $\lim a_{n}=a$ and $\lim b_{n}=b$. prove:
(a) $\lim \left(a_{n}+b_{n}\right)=a+b$:
(b) $\lim \left(a_{n} b_{n}\right)=\mathrm{ab}$.
7. (10\%) Show that if $0<r<1$, then $\lim r^{n}=0$.
8. (10\%) Define what it means for a sequence to be Cauchy and prove a Cauchy sequence converges.
