Name: _____

Math 315, Section 2 Exam 1 Instructor: David G. Wright 29-31 January 2009

- 1. (20%) Give an example of each of the following or argue that such a request is impossible:
 - (a) an unbounded sequence with a convergent subsequence;
 - (b) a nested sequence of open intervals whose intersection is empty;
 - (c) an unbounded sequence (a_n) and a convergent sequence (b_n) so that $(a_n b_n)$ is bounded;
 - (d) a bounded monotone sequence that has a divergent subsequence.
- 2. (10%) State and prove the Archimedean Property.

3. (10%) Assume that for any two positive real numbers a < b, there exists a rational number r satisfying a < r < b. Prove that for any two negative numbers c < d, there is a rational number s with c < s < d.

4. (10%) Show that the real numbers \mathbb{R} are uncountable.

5. (10%) Prove that the sequence defined by $a_1 = 1$ and $a_{n+1} = 3 - \frac{1}{a_n}$ is increasing and $a_n < 3$ for all n. Explain why a_n is convergent and find its limit. Hint: First show $1 \le a_n < 3$ for all n.

- 6. (20%) Let $\lim a_n = a$ and $\lim b_n = b$. prove:
 - (a) $\lim(a_n + b_n) = a + b$:

(b) $\lim(a_n b_n) = ab.$

7. (10%) Show that if 0 < r < 1, then $\lim r^n = 0$.

8. (10%) Define what it means for a sequence to be Cauchy and prove a Cauchy sequence converges.